Geophysical and Mineralogical Constraints on H-Cycling in the Deep Interior

J. R. Smyth

with help from C. M. Holl, H. Spetzler
(University of Colorado, Boulder)
D. J. Frost, S. D. Jacobsen, F. Langenhorst, and C. A. McCammon
(Bayerisches Geoinstitut, Bayreuth)
How Much Water Is There?

- Oceans cover 71% of the planet’s surface.
- The mass of the oceans is only 0.025% of the planet.
H-cycling in the Deep Earth

• There has been running water (implying oceans) as far back as we can see in geologic time.
• Water fluxes melting at ridges.
 – MORBs contain 0.1 to 0.3 wt % H₂O
 – OIBs contain 0.6 to 1.0 wt % H₂O
H-cycling in the Deep Earth

- Water fluxes melting at ridges.
 - MORBs contain 0.1 to 0.3 wt % H_2O
 - OIBs contain 0.6 to 1.0 wt % H_2O
- Plates hydrate on ocean floor.
- Plates dehydrate on subduction.
 - Completely?
Dry Wadsleyite and Ringwoodite are too fast to be consistent with PREM model for olivine-rich upper mantle.
H-Cycling: Role of Nominally Anhydrous Phases

- Natural Samples
 - Eclogites and Peridotites
- Synthesis Experiments
 - Olivine, Wadsleyite, Wads II, Ringwoodite
- Effects on Transition Depths
- Effects on P and S velocities
- Isotope Effects
H-Cycling: Natural Samples: Eclogites

- Garnet: not much H
 - H_4O_4 tetrahedron large
 - Inhibited by pressure

- Clinopyroxene
 - HAlSi_2O_6 (hydro-jadeite)
 - 1000 ppm H_2O by weight @ 4GPa
 - >5000 ppm at 10GPa
2 HAISi$_2$O$_6$ ->
H$_2$O + Al$_2$SiO$_5$ + SiO$_2$
H-Cycling: Natural Samples

- Nominally anhydrous minerals in eclogite can carry 2000 ppm or more
- Olivine can incorporate 2000 ppm
- 1000 ppm in crustal portion of slab can recycle the ocean volume in 4.5 Gy (at current subduction rates).
- Ocean volume may have exchanged more than once.
H-Cycling:
Natural Samples: Peridotites

- Olivine: natural samples typically < 200 ppm H$_2$O
- Olivine can incorporate > 2000 ppm H$_2$O @ P > 10GPa
- Loses H$_2$O quickly on decompression
Synthesis Experiments:
5000 ton Multi-anvil Press,
BGI Bayreuth
H-Cycling: Synthesis Experiments

- Synthesis
- Characterization
 - XRD single crystal
 - TEM
 - IR / Raman
 - Mössbauer
- Property Measurements
 - Isothermal Compression
 - Ultrasonic Vp and Vs

- Olivine
- Wadsleyite
- Wadsleyite II
- Ringwoodite
Dry Peridotite (after Zhang & Herzberg, 1994)

- Olivine
- Wadsleyite
- Wadsleyite II
- Ringwoodite
Hydration of Olivine: Summary

- Olivine accepts up to 0.2 wt % H$_2$O at 12GPa (Kohlstedt et al, 1996)
- Hydration causes measurable volume expansion
- Hydration appears to involve divalent cation vacancies principally at M2.
- Hydration may cause decreased bulk modulus and seismic velocities.
- H partitions strongly to wadsleyite.
Hydrous Wadsleyite

- $1.6[\text{MgO}] \cdot 0.2[\text{Mg(OH)}_2] \cdot 1[\text{SiO}_2]$
- Up to 0.4 H pfu
- H on non-silicate oxygens
- $\text{Si}/(\text{Mg+Fe}) = 0.5$
- $\rho = 3.36 \text{ g/cm}^3$
- 3.0% H$_2$O by weight
- 10 % H$_2$O by volume
Wadsleyite II (Spinelloid IV)

- 1.6[MgO]•0.2[Mg(OH)₂]•1[SiO₂]
- May occur between wadsleyite and ringwoodite (17.5 GPa @ 1400 °C)
- May require Fe³⁺, Cr or Al
- May obscure 520km discontinuity
Ringwoodite Composition

- \((\gamma\text{-Mg}_{1.63}\text{Fe}_{0.22}\text{H}_{0.4}\text{Si}_{0.95}\text{O}_4)\)
- ~10 % of Fe present as ferric (Mössbauer)
- Dark blue color
Ringwoodite with Quartz @ 11 Gpa
Ringwoodite Isothermal Compression to 11 GPa

Ringwoodite cell volume vs pressure

![Graph showing the relationship between unit cell volume (Å³) and pressure (GPa). The volume decreases as pressure increases, indicating compression.]
Ringwoodite Isothermal Compression to 11 GPa

- $F_{o_{90}}$ with 10,000 ppm H_2O
- $K_T = 169.0 \pm 3.4$ GPa
- $K' = 7.9 \pm 0.9$
- One Percent H_2O in Ringwoodite
 - $= 600^\circ C$ on K_T
Ringwoodite Ultrasonics
(Jacobsen et al BGI)

• P and S velocity measurements:
 – Ghz Interferometry in Single Xtls
 – $V_p = 9690 - 0.042 \, C_{H_2O} \, (m/s)$
 – $V_s = 5680 - 0.036 \, C_{H_2O} \, (m/s)$
 – $C_{H_2O} = \text{ppm (wt)} \, H_2O$

• One Percent H_2O in Ringwoodite
 – = 600$^\circ$C on V_p (at Low P) (~4%)
 – = 1000$^\circ$C on V_s (at Low P) (~6%)
Hydration of Wadsleyite and Ringwoodite is more consistent with model shear velocity structure.
Lateral Velocity Variations in TZ May Reflect Hydration

- Red means Wet
- Blue means Dry
Blue = Dry;

Red = Wet

Dry

Wet

Cool

Hot
Deuterium/Hydrogen ratios in the Solar System

- Estimated protosolar: $\sim 2 \times 10^{-5}$
- Earth: 1.5×10^{-4} (SMOW)
- Mars: $\sim 8 \times 10^{-4}$
- Venus: $\sim 2 \times 10^{-2}$
- Jupiter and Saturn: $\sim 2 - 2.5 \times 10^{-5}$
- Neptune: $\sim 6 \times 10^{-5}$
- Comets, asteroids, interstellar dust: ???
D/H Fractionation of Mantle Minerals Relative to Phlogopite (after Bell and Ihinger, 2000). Fractionation increases with Pressure.
D-H fractionation increases with pressure

- High pressure phases prefer H
- Water returned to surface is D-enriched.
- The TZ nominally anhydrous silicates are big, but not sufficient to hold the missing light H.
- If Earth were Proto-solar in value there would be a huge reservoir of light H in the interior.
- Lower mantle or core
Are the oceans just the tip of the iceberg?