How do oceans and continents differ?

The average ocean depth is 3000m.

If the Earth’s surface is 30% land and 70% ocean, why is there any land at all?

Why are there not just a few little islands?

Ocean crust is thin, dense, and young.

Continent crust is thick, light, and old.
Polymerization of Silica

- Each Si atom is surrounded by 4 oxygens.
- Polymerization is the degree to which the oxygens are shared with other Si atoms.
- Polymerization is the number of Si-O-Si bonds per tetrahedron.
 - Olivine has none: isolated SiO$_4$ groups
 - Pyroxene has 50% shared: SiO$_3$ chains
 - Mica has has 75% shared: Si$_2$O$_7$ sheets
 - Quartz and feldspar have 100% (Si,Al)O$_2$ framework.

MAGMA

- Magma is the term for any molten silicate material, whether below the surface or on top.
- Volcanic rocks are erupted on the surface.
 - Volcanic rocks are fine-grained (<1 mm)
- Intrusive igneous rocks crystallize from magma below the surface.
 - Intrusive igneous rocks are coarse-grained (>1 mm)
 - Pegmatites are very coarse-grained (>1 cm)
Igneous Rocks:
Learning Goals

- What does ‘igneous’ mean?
- Composition
- Mineralogy
 - Mantle
 - Oceanic Crust
 - Continental Crust
- Igneous Fractionation
 - How the chemistry evolves

Intrusive Igneous Rocks

- Composition
- Mineralogy
- Geologic Setting
 - Mantle
 - Oceanic Crust
 - Continental Crust
- Igneous Fractionation
 - How the chemistry evolves

Igneous Rock Compositions

- Rock compositions are described in weight percents of oxides:
 - SiO₂, MgO, FeO, Al₂O₃, etc
- The principal variation in igneous rock compositions is silica (SiO₂) content.
- The degree of polymerization of silica increases with silica content. (in both crystals and melt).

Igneous Rock Compositions

- Igneous rocks vary in composition (SiO₂ content)
 - ultramafic (~40 wt%) (peridotite)
 - mafic (45-55%) (gabbro / basalt)
 - intermediate (55-65%) (diorite/andesite)
 - silicic (65-75 wt %) (rhyolite/granite)
- The mantle is peridotite (ultramafic).
- The ocean crust is gabbro (mafic).
- The continents are granite (silicic)

Igneous Rock Names and Compositions

<table>
<thead>
<tr>
<th>Composition Name</th>
<th>Intrusive Rock Name</th>
<th>Volcanic Rock Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultramafic</td>
<td>Peridotite</td>
<td>(Komatiite)</td>
</tr>
<tr>
<td>Mafic</td>
<td>Gabbro</td>
<td>Basalt</td>
</tr>
<tr>
<td>Intermediate</td>
<td>Diorite</td>
<td>Andesite</td>
</tr>
<tr>
<td>Silicic (felsic)</td>
<td>Granite</td>
<td>Rhyolite</td>
</tr>
</tbody>
</table>

Igneous Rock Mineralogy

- Peridotite (Ultramafic)
 - Olivine ((Mg,Fe)₂SiO₄)
 - Pyroxene ((Mg,Fe,Ca)SiO₃)
- Gabbro (Mafic)
 - Feldspar (CaAl₂Si₂O₈)
 - Pyroxene ((Mg,Fe,Ca)SiO₃)
 - Garnet (Mg₃Al₂Si₃O₁₂) or Spinel (MgAl₂O₄)
Igneous Rock Mineralogy

- Diorite (Intermediate)
 - Feldspar (CaAl₂Si₂O₈)
 - Feldspar (NaAlSi₃O₈)
 - Pyroxene ((Mg,Fe,Ca)Si₂O₅)
 - Mica
 \(K(Mg,Fe,+)_{2}(Si,Al)_{4}O_{10}(OH)_{2} \)

- Granite (Silicic)
 - Quartz (SiO₂)
 - Feldspar (NaAlSi₃O₈)
 - Feldspar (KAl₂Si₃O₈)
 - Mica (biotite)
 \(K(Mg,Fe,+)_{2}(Si,Al)_{4}O_{10}(OH)_{2} \)
 - Mica (muscovite)
 \((KAl)_{2}(Si,Al)_{4}O_{10}(OH)_{2} \)

Igneous Rock Names and Compositions

- **Intrusive Rock Name**
 - Ultramafic
 - Mafic
 - Intermediate
 - Silicic (felsic)

- **Granite**
 - Peridotite
 - Gabbro
 - Diorite
 - Granite

- **Volcanic Rock Name**
 - (Komatitite)
 - Basalt
 - Andesite
 - Rhyolite

Geologic Settings

- **Compositions**
 - Ultramafic
 - Mafic
 - Intermediate
 - Silicic (felsic)

- **Where?**
 - Mantle
 - Oceanic
 - Subduction Zones
 - Continental Mass

There appear to be 13 major plates that cover the globe.

Igneous Fractionation: Peridotite-basalt-granite

- **Partial Melting**
 - Rocks have a melting interval of several hundred degrees C.
 - First melt is rich in silica, water and trace elements.

- **Fractional Crystallization**
 - First-formed crystals low in silica settle to the bottom.
Peridotite Partial Melting

First melt at 3-mineral junctions

Melt composition is different from host

Melt is less dense
Melt flows when pockets touch

Peridotite + Basalt Melt

(a) Early crystallization

Crystals form from magma cooling and settle to floor of chamber
Crystals from early cooling accumulate

Igneous Fractionation:
Layered Mafic Intrusion

Granite Outcrop

Intrusive forms

- **Pluton**: Any large discordant intrusion at depth
 - Batholith: large > 100 km2
 - Stock: small < 100 km2
- **Dike**: Tabular non-conformable
- **Sill**: Tabular conformable

Dikes:
- Tabular discordant

Sills:
- Tabular conformable
How do oceans and continents differ?

- **Oceanic crust is:**
 - Thin (~7 km)
 - Dense (~3.1 g/cm³)
 - Mafic (45-50% SiO₂)
 - Young (< 200 my)
- **Continental Crust is:**
 - Thick (>30 km)
 - Light (~2.7 g/cm³)
 - Silicic (> 60% SiO₂)
 - Old (> 1000 my)

Difference is result of partial melting and fractional crystallization.

- Mid ocean ridge makes basalt from peridotite.
- Partial melting at subduction zones makes andesite from basalt.

Terms

- Polymerization
- Magma
- Pegmatite
- Igneous Fractionation
- Partial melting
- Fractional Crystallization
- Ultramafic
- Mafic
- Intermediate
- Silicic
- Peridotite
- Gabbro
- Diorite
- Granite
- Pluton
- Stock
- Batholith
- Dike
- Sill
Assignment

• Grotzinger Chapter 5

• Sedimentary Rocks

Clicker Question

• What is the most likely geologic setting in which conglomerate was deposited?
 – A. Continental alluvial fans
 – B. Continental deserts and beaches
 – C. Shallow-water marine
 – D. Deep-water marine
 – E. Reefs

Clicker Question

• What is the most likely geologic setting in which sandstone was deposited?
 – A. Continental alluvial fans
 – B. Continental deserts and beaches
 – C. Shallow-water marine
 – D. Deep-water marine
 – E. Reefs

Clicker Question

• What is the most likely geologic setting in which shale was deposited?
 – A. Continental alluvial fans
 – B. Continental deserts and beaches
 – C. Shallow-water marine
 – D. Deep-water marine
 – E. Reefs (Tropical Shallow Marine)

Crust and Mantle

Lithosphere and Asthenosphere

Clicker Question 1

• The term for any molten silicate material on or below the Earth's surface is:
 – A. Granite
 – B. Basalt
 – C. Magma
 – D. Pegmatite
 – E. Lava
Clicker Question 1
• The term for any molten silicate material on or below the Earth’s surface is:
 – A. Granite
 – B. Basalt
 – C. Magma
 – D. Pegmatite
 – E. Lava

Clicker Question 2
• The most abundant element in the Earth is:
 – A. Hydrogen
 – B. Oxygen
 – C. Magnesium
 – D. Silicon
 – E. Iron

Clicker Question 2
• The most abundant element in the Earth is:
 – A. Hydrogen
 – B. Oxygen
 – C. Magnesium
 – D. Silicon
 – E. Iron

Clicker Question 3
• The composition of the mantle is said to be:
 – A. Ultramafic
 – B. Mafic
 – C. Intermediate
 – D. Silicic
 – E. Sedimentary

Clicker Question 3
• The composition of the mantle is said to be:
 – A. Ultramafic
 – B. Mafic
 – C. Intermediate
 – D. Silicic
 – E. Sedimentary

Clicker Question
• Any small or large discordant intrusion at depth is known as a
 – A. Pluton
 – B. Batholith
 – C. Stock:
 – D. Dike
 – E. Sill
Clicker Question

• Any small or large discordant intrusion at depth is known as a
 – A. Pluton
 – B. Batholith
 – C. Stock:
 – D. Dike
 – E. Sill

Clicker Question

• A small conformable intrusion between and parallel to sedimentary layers is known as a
 – A. Pluton
 – B. Batholith
 – C. Stock:
 – D. Dike
 – E. Sill

Clicker Question

• A small conformable intrusion between and parallel to sedimentary layers is known as a
 – A. Pluton
 – B. Batholith
 – C. Stock:
 – D. Dike
 – E. Sill

Clicker Question

• A small discordant intrusion that cuts across sedimentary layers is known as a
 – A. Pluton
 – B. Batholith
 – C. Stock:
 – D. Dike
 – E. Sill

Clicker Question

• A small discordant intrusion that cuts across sedimentary layers is known as a
 – A. Pluton
 – B. Batholith
 – C. Stock:
 – D. Dike
 – E. Sill