Chapter 4

INTRUSIVE IGNEOUS ROCKS

Polymerization of Silica
- Each Si atom is surrounded by 4 oxygens.
- Polymerization is the degree to which the oxygens are shared with other Si atoms.
- Polymerization is the number of Si-O-Si bonds.
 - Olivine has none: isolated SiO_4 groups
 - Pyroxene has one third: SiO_3 chains
 - Mica has has 40% shared: Si_4O_{10} sheets
 - Quartz and feldspar have 100% (Si,Al)O_2 framework.

MAGMA
- Magma is the term for any molten silicate material, whether below the surface or on top.
- Volcanic rocks are erupted on the surface.
 - Volcanic rocks are fine-grained (<1 mm)
- Intrusive igneous rocks crystallize from magma below the surface.
 - Intrusive igneous rocks are coarse-grained (> 1 mm)
 - Pegmatites are very coarse grained (> 1 cm)

Intrusive Igneous Rocks
- Composition
- Mineralogy
- Geologic Setting
 - Mantle
 - Oceanic Crust
 - Continental Crust
- Igneous Fractionation
 - How the chemistry evolves
Igneous Rock Compositions

- Rock compositions are described in weight percents of oxides.
- The principal variation in igneous rock compositions is silica (SiO$_2$) content.
- The degree of polymerization of silica increases with silica content (both in crystals and melt).

Igneous Rock Compositions

- Igneous rocks vary in composition from
 - ultramafic (~40 wt%) (peridotite)
 - mafic (48-55%) (gabbro)
 - intermediate (55-65%) (diorite)
 - silicic (65-75 wt %) (granite)
- The mantle is peridotite (ultramafic).
- The ocean basins gabbro (mafic).
- The continents are granite (silicic)

Igneous Rock Names and Compositions

- Composition
 - Ultramafic
 - Mafic
 - Intermediate
 - Silicic (felsic)
- Intrusive
 - Peridotite
 - Gabbro
 - Diorite
 - Granite
- Volcanic
 - Komatiite
 - Basalt
 - Andesite
 - Rhyolite

Igneous Rock Mineralogy

- Peridotite (Ultramafic)
 - Olivine ((Mg,Fe)$_2$SiO$_4$
 - Pyroxene ((Mg,Fe,Ca)SiO$_3$
- Gabbro (Mafic)
 - Feldspar (CaAl$_2$Si$_2$O$_8$
 - Pyroxene
 - Garnet (Mg$_3$Al$_2$Si$_3$O$_12$
- Diorite (Intermediate)
 - Feldspar (CaAl$_2$Si$_2$O$_8$
 - Pyroxene
 - Mica
- Granite (Silicic)
 - Quartz (SiO$_2$
 - Feldspar (NaAlSi$_3$O$_8$
 - Mica (biotite)
 - Mica (muscovite)
 - Mica (KAl$_2$(Si,Al)$_4$O$_10$(OH)$_2$

Geologic Settings

- Compositions
 - Ultramafic
 - Mafic
 - Intermediate
 - Silicic (felsic)
- Where?
 - Mantle
 - Oceanic
 - Subduction Zones
 - Continental Mass
Geologic Settings:

- Mantle
- Mid-ocean ridges
- Oceanic Islands
- Island arcs
- Continental

There appear to be 13 major plates that cover the globe.

Igneous Fractionation:

Peridotite-basalt-granite

- **Partial Melting**
 - Rocks have a melting interval of several hundred degrees C.
 - First melt is rich in silica, water and trace elements.

- **Fractional Crystallization**
 - First-formed crystals low in silica settle to the bottom.
Intrusive forms

- **Pluton**: Any large discordant intrusion at depth
 - **Batholith**: large > 100 km2
 - **Stock**: small < 100 km2
- **Dike**: Tabular non-conformable
- **Sill**: Tabular conformable
Small Pluton: Stock

Intrusive forms
- **Pluton**: Any large discordant intrusion at depth
 - Batholith: large > 100 km²
 - Stock: small < 100 km²
- **Dike**: Tabular non-conformable
- **Sill**: Tabular conformable

Terms
- Polymerization
- Magma
- Pegmatite
- Igneous Fractionation
- Partial melting
- Fractional Crystallization
- Ultramafic
- Mafic
- Intermediate
- Silicic
- Peridotite
- Gabbro
- Diorite
- Granite
- Pluton
- Stock
- Batholith
- Dike
- Sill