EXTRUSIVE IGNEOUS ROCKS

Volcanoes and Volcanic Rocks

What's your favorite volcano?

Famous Volcanoes

- Basalts
 - Dotsero, CO
 - Kilauea
 - Mauna Loa
 - Haleakala
 - Hekla

- Andesites
 - Fuji
 - St. Helens
 - Ranier
 - Shasta
 - Stromboli
 - Vesuvius
 - Popocatépetl
 - Orizaba
 - Pélée

- Rhyolites
 - Yellowstone
 - Valles
 - Long Valley
 - Crater Lake
 - Pinatubo
 - Krakatoa
 - Santorini
 - Campi Phlegri (Naples)

Do you clean your volcanoes regularly?

Where do volcanoes occur?

- Plate Boundaries (98%)
 - Divergent
 - Ocean-ocean convergent
 - Ocean-continent Convergent
- Hot (wet) Spots
Where do volcanoes not occur?

- Cratons
- Passive continental margins
- Oceanic abyssal plains
- Continent – continent convergent boundaries

Most Volcanoes are at Plate Boundaries

Igneous Rock Names and Compositions

- **Composition Name**
 - Ultramafic
 - Mafic
 - Intermediate
 - Silicic (felsic)

- **Intrusive Rock Name**
 - Peridotite
 - Gabbro
 - Diorite
 - Granite

- **Volcanic Rock Name**
 - (Komatiite)
 - Basalt
 - Andesite
 - Rhyolite

Most Volcanoes are at Plate Boundaries

Magma and Lava

- **Magma** is the term for any molten silicate material, whether below the surface or on top.
- **Volcanic rocks** are erupted on the surface.
 - Volcanic rocks are fine-grained (<1 mm)
- **Lava** is the term for a magma on the surface.

Geologic Settings
Basaltic Eruptions

- Low Viscosity
- High Temperature (1000 - 1200°C)
- Normally Quiescent Lava Flows
 - Aa - early, low temperature, blocky flow
 - Pahoehoe - later high temperature, ropy flow
 - Pillow Lavas - underwater flow
- Edifice
 - Shields
 - Cinder cones

Aa, Hawaii (Basalt)

Pahoehoe, Hawaii (Basalt)

Pillow Lava, Kauai (Basalt)

Cinder Cone, Pu’u’o’o, Hawaii (Basalt)

Most Volcanoes are at Plate Boundaries
Cinder Cone + Caldera, (Basalt)

Skjaldbreidur Shield, (Basalt)

Caldera, (Basalt) Halemaumau

Basalt Flow Grand Canyon < 1 My old

Columnar Basalt

Basaltic Eruptions

- Low Viscosity
- High Temperature (1000 - 1200°C)
- Normally Quiescent Lava Flows
 - Aa - early, low temperature, blocky flow
 - Pahoehoe - later high temperature, ropy flow
 - Pillow Lavas - underwater flow
- Edifice
 - Shields
 - Cinder cones
Famous Volcanoes

- Basalts
- Dotsero, CO
- Kilauea
- Mauna Loa
- Haleakala
- Hekla
- Vulcan’s Throne

- Andesites
- Fuji
- St. Helens
- Ranier
- Shasta
- Stromboli
- Vesuvius
- Popocatepetl
- Orizaba
- Pelee
- Etna

- Rhyolites
- Yellowstone
- Valles/Jemez
- Long Valley
- Crater Lake
- Pinatubo
- Krakatoo
- Santorini
- Campi Phlegri (Naples)

Andesite Eruptions

- Higher viscosity (higher polymerization)
- Lower temperature
- More water, more explosive
- Subduction zone volcanism
- Flows
 - Viscous lava flows
 - Pyroclastic flows
- Edifice
 - Composite Cones

Geologic Settings

Which volcanic environment will, on average, produce the most felsic (silicic) lavas?

A. Mid-ocean ridge
B. Island arc
C. Continental arc
D. Oceanic hotspot

Clicker Question

Plate tectonics explains the global pattern of volcanism.

Which volcanic environment will, on average, produce the most felsic (silicic) lavas?

A. Mid-ocean ridge
B. Island arc
C. Continental arc
D. Oceanic hotspot
Clicker Question

Plate tectonics explains the global pattern of volcanism.

What composition volcanic rocks characterize magmatism at mid-ocean ridges?

A. Carbonatite
B. Basalt
C. Andesite
D. Rhyolite

Clicker Question

Plate tectonics explains the global pattern of volcanism.

What composition volcanic rocks characterize magmatism at mid-ocean ridges?

A. Carbonatite
B. Basalt
C. Andesite
D. Rhyolite

Andesite Flow, Mt Shasta

Composite Cone, Mt. Fuji, Japan

Composite Cone, Mt. Daisen

Composite Cone, Llaima Volcano, Chile
Andesite Eruptions
- Higher viscosity (higher polymerization)
- Lower temperature
- More water, more explosive
- Subduction zone volcanism
- Flows
 - Viscous lava flows
 - Pyroclastic flows (Nuée Ardente)
- Edifice
 - Composite Cones

Famous Volcanoes
- Basalts
 - Dotsero, CO
 - Kilauea
 - Mauna Loa
 - Haleakala
 - Hekla
 - Vulcan's Throne
- Andesites
 - Fuji
 - St. Helens
 - Ranier
 - Shasta
 - Stromboli
 - Vesuvius
 - Popocatepetl
 - Orizaba
 - Pelée
 - Etna
- Rhyolites
 - Yellowstone
 - Valles/Jemez
 - Long Valley
 - Crater Lake
 - Pinatubo
 - Krakatao
 - Santorini
 - Campi Phlegri (Naples)

Clicker Question
- Which of the following is an example of a basalt volcano?
 - A. Mt St. Helens
 - B. Yellowstone
 - C. Mauna Loa
 - D. Mt Pinatubo
 - E. Mt. Fuji

Clicker Question
- Which of the following is an example of an andesite volcano?
 - A. Kilauea
 - B. Yellowstone
 - C. Mauna Loa
 - D. Mt Pinatubo
 - E. Mt. Fuji
Clicker Question

Which of the following is an example of an andesite volcano?

- A. Kilauea
- B. Yellowstone
- C. Mauna Loa
- D. Mt Pinatubo
- E. Mt. Fuji

Rhyolite Eruptions

- Very high viscosity
- Low temperature (600 - 800°C)
- Massive Pyroclastic eruptions
 - Air fall (pumice)
 - Ash Flow (Nuée Ardente) Tuff
 - Obsidian Flows
- Edifice
 - Caldera (5 - 25 km)
 - Resurgent dome

Rhyolite Eruptions

- Associated Phenomena
 - Hot Springs
 - Geysers
 - Fumaroles
- Geologic Setting
 - Continental Margins and Interiors
 - Subduction Zones

Pumice = Glass foam

Geologic Settings

Ash-Flow Tuff

with Air-Fall Units (pumice)
As-Flow Tuff Unit

Silicic Tuff Units (Jemez, NM)

Caldera with Cinder Cone
Crater Lake, OR

Sulfur Fumarole, Nysseros

10
Geyser
Old Faithful (Yellowstone)

Rhyolite Eruptions
- Very high viscosity
- Low temperature (600 - 800ºC)
- Massive Pyroclastic eruptions
 - Air fall (pumice)
 - Ash Flow (Nuée Ardente) Tuff
 - Obsidian Flows
- Edifice
 - Caldera (5 - 25 km)
 - Resurgent dome

Andesite Eruptions
- Higher viscosity (higher polymerization)
- Lower temperature
- More water, more explosive
- Subduction zone volcanism
- Flows
 - Viscous lava flows
 - Pyroclastic flows
- Edifice
 - Composite Cones

Basaltic Eruptions
- Low Viscosity
- High Temperature (1000 - 1200ºC)
- Normally Quiescent Lava Flows
 - Aa - early, low temperature, blocky flow
 - Pahoehoe - later high temperature, ropy flow
 - Pillow Lavas - underwater flow
- Edifice
 - Shields
 - Cinder cones

Crater Lake, OR
A. Basalt
B. Andesite
C. Rhyolite
A. Basalt
B. Andesite
C. Rhyolite

Geologic Settings

Most Volcanoes are at Plate Boundaries
Famous Volcanoes

- Basalts
 - Fuji
 - St. Helens
 - Kilauea
 - Mauna Loa
 - Hekla
- Andesites
 - Shasta
 - St. Helens
 - Ranier
 - Vesuvius
 - Popocatépetl
 - Orizaba
 - Pelée
- Rhyolites
 - Yellowstone
 - Valles/Jemez
 - Long Valley
 - Crater Lake
 - Pinatubo
 - Krakatao
 - Santorini
 - Campi Phlegri (Naples)

Volcanic Terms

- Ultramafic
- Mafic
- Intermediate
- Silicic
- Basalt
- Andesite
- Magma
- Lava
- Aa
- Pahoehoe
- Pillow Lava
- Shield
- Composite Cone
- Cinder Cone
- Caldera
- Pyroclastic
- Nuée Ardente
- Air Fall
- Ash Flow
- Tuff
- Obsidian
- Vitrophyre
- Pumice
- Resurgent dome
- Hot Spring
- Geyser
- Rhyolite

EXTRUSIVE IGNEOUS ROCKS

Igneous Rock Names and Compositions

- Composition Name
 - Ultramafic
 - Mafic
 - Intermediate
 - Silicic (felsic)

- Intrusive Rock Name
 - Peridotite
 - Gabbro
 - Diorite
 - Granite

- Volcanic Rock Name
 - (Komatiite)
 - Basalt
 - Andesite
 - Rhyolite

Most Volcanoes are at Plate Boundaries

Famous Volcanoes

- Basalts
 - Fuji
 - St. Helens
 - Kilauea
 - Mauna Loa
 - Hekla
 - Vulcans Throne
- Andesites
 - Shasta
 - St. Helens
 - Ranier
 - Vesuvius
 - Popocatépetl
 - Orizaba
 - Pelée
- Rhyolites
 - Yellowstone
 - Valles
 - Long Valley
 - Crater Lake
 - Pinatubo
 - Krakatao
 - Santorini
 - Campi Phlegri (Naples)
Volcanic Terms

- Ultramafic
- Mafic
- Intermediate
- Silicic
- Basalt
- Andesite
- Magma
- Lava
- Aa
- Pahoehoe

- Pillow Lava
- Shield
- Composite Cone
- Cinder Cone
- Caldera
- Pyroclastic
- Nuée Ardente
- Air Fall
- Ash Flow

- Tuff
- Obsidian
- Vitrophyre
- Pumice
- Resurgent dome
- Hot Spring
- Geyser
- Rhyolite

Clicker Not Registered

- McClelland, A
- Keegan, R.
- Moten, J.
- Runyon, K.
- Scott, G.
- Shepley, J.
- Wheeler, S.