I. (24) Define the following:
 A. Mineral
 B. Polymorph
 C. Crystal form
 D. Vitreous
 E. Chalcophile
 F. Atmophile
II. (9) Give an example of a mineral with the following values of Mohs' hardness:

A. 1. ___________________________ D. 6. __________________________________
B. 3. _____________________________ E. 8. __________________________________
C. 4. _____________________________ F. 10. _________________________________

III. (15) Write the number of the appropriate mineral group (right column) next to the following minerals (left column):

a. _____ Celestine (SrSO₄) 1. Orthosilicate
b. _____ Galena (PbS) 2. Chain Silicate
c. _____ Sylvite (KCl) 3. Layer Silicate
d. _____ Biotite (K(Mg,Fe)₃AlSi₃O₁₀(OH)₂) 4. Framework Silicate
e. _____ Sanidine (feldspar) KAlSi₃O₈ 5. Native Element
f. _____ Proto-enstatite (MgSiO₃) 6. Halide
g. _____ Graphite (C) 7. Sulfide
h. _____ Olivine (Mg₂SiO₄) 8. Sulfate
i. _____ Witherite (BaCO₃) 9. Phosphate
j. _____ Apatite (Ca₅(PO₄)₃OH) 10. Carbonate

IV. (12) For each of the following point-group symmetry diagrams, identify the point group (crystal class) and crystal system:

Point Group: ________________ _________________ _______________
Crystal System: ________________ _________________ _______________
V. (6) As illustrated below, a lattice plane intercepts the \(b \)-axis at 3 units, the \(c \)-axis at 2 units, and is parallel to \(a \). Give the Miller indices for the plane.

VI. (6) Identify the lattice type (P, A, B, C, I, F, or R) for each of the following:

VII. (12) Identify the crystal system:

A. \(a = b = c; \quad \alpha = \beta = \gamma = 90^\circ \) ________________________________
B. \(a = b \neq c; \quad \alpha = \beta = \gamma = 90^\circ \) ________________________________
C. \(a \neq b \neq c; \quad \alpha = \beta = \gamma = 90^\circ \) ________________________________
D. \(a = b \neq c; \quad \alpha = \beta = 90^\circ, \gamma = 120^\circ \) ________________________________
E. \(a \neq b \neq c; \quad \alpha = \gamma = 90^\circ \) ________________________________
F. \(a \neq b \neq c; \) ________________________________
VIII. (8) Shown below are two symmetry diagrams for primitive orthorhombic space groups in standard orientation (a-vertical, b horizontal, and c normal to page). Give the Hermann-Mauguin symbol for the space group and for the crystal class (point group) to which it belongs.

<table>
<thead>
<tr>
<th>axis</th>
<th>plane</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
</tr>
</tbody>
</table>

H-Msymbol __________
Point Group __________

IX. (10) Last year, some colleagues and I synthesized a sample of clinopyroxene at 120 kbar and 1400ºC using the 5000-ton press at the Bavarian Geological Institute at Bayreuth in Germany. Given below is a chemical analysis of the sample we made. Calculate the formula (Numbers of Si, Mg, and Fe cations per six oxygens).

<table>
<thead>
<tr>
<th>Oxide</th>
<th>MolWt Oxide</th>
<th>Wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>60.086</td>
<td>59.00</td>
</tr>
<tr>
<td>MgO</td>
<td>40.312</td>
<td>37.77</td>
</tr>
<tr>
<td>FeO</td>
<td>71.846</td>
<td>3.23</td>
</tr>
</tbody>
</table>

Atom AtWt Cations per 6 Oxygens
O 15.9994 6.000
Si 28.087
Mg 24.305
Fe 55.847