Hydration of Olivine
and
Earth’s Deep Water Cycle
Olivine Hydration and Earth’s Deep Water Cycle

J. R. Smyth, (University of Colorado)
Dan Frost and Fabrizio Nestola
(Bayerisches Geoinstitut, Germany)

Financial support from
Alexander von Humboldt Foundation and US National Science Foundation
Oceans cover 71% of the planet’s surface.
71% of the surface

But only 0.025% of the mass
• 0.15 percent \(H_2O \) by weight in the top 10 km of the descending slab is sufficient to recycle the entire ocean volume once over 4.5 billion years at current subduction rates.
H-cycling: Role of Nominally Anhydrous Phases

- **Synthesis Experiments**
 - Olivine
 - Wadsleyite (Spinellloid III)
 - Wadsleyite II (Spinellloid IV)
 - Ringwoodite (Spinel)
 - Pyroxene

- **Structure studies (X-ray, neutron):**
 - Protonation mechanisms
 - Volume of Hydration
H-cycling: Role of Nominally Anhydrous Phases

- Synthesis Experiments
- Effect of H on volume and density
- Effects of H on Transition Depths
- Effects of H on elastic properties:
 - Isothermal Bulk Modulus
 - P and S velocities
 - Brillouin
 - Ultrasonic
Nominally Hydrous
- Brucite
- Phase A
- Chondrodite
- Clinohumite

Nominally Anhydrous
- Periclase
- Olivine
- Clinoenstatite
- Stishovite
Olivine Fo_{100}: 12 GPa @ 1250°C (With Clinoenstatite)

\sim8000 ppmw H_2O
Hydration of Olivine

- Natural olivine contains less than ~0.03 wt % H$_2$O (300 ppm)

- H increases sharply with pressure

- 5000 to ~9000 ppm @ 12 GPa
Hydration of Forsterite@ 12GPa
FTIR results (ppmw H₂O)

<table>
<thead>
<tr>
<th></th>
<th>1100°</th>
<th>1250°</th>
<th>1400°</th>
<th>1600°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si-XS</td>
<td>5770</td>
<td>8000</td>
<td>3400</td>
<td>1000</td>
</tr>
<tr>
<td>Mg-XS</td>
<td>5560</td>
<td>8800</td>
<td>4400</td>
<td></td>
</tr>
</tbody>
</table>
Hydration of Olivine @ 12GPa

- We observe roughly equivalent amounts in equilibrium with enstatite or clinohumite.
- We observe ~20% more H at 1100°C than previous workers (Kohlstedt et al., 1996).
- We observe ~ 2.5 x more at 1250°C than previous workers at 1100°C.
Hydration of Olivine @ 12GPa

- We observe a measurable effect of hydration on unit cell volume.

- Structure refinements from X-ray single crystal data and FTIR spectra are consistent with M1 site vacancy as the principal hydration mechanism.

\[2H^+ \leftrightarrow Mg^{2+} \]
Cell Volume vs H content

Forsterite Vol vs H2O

Cell Volume Å\(^3\)

PPMW H2O
Cell Volume vs H content

Relative molar volume vs H2O

- Olivine
- Wadsleyite
- Ringwoodite

H2O (ppmw)

Relative molar volume

Linear (Wadsleyite)
Linear (Ringwoodite)
Linear (Olivine)
Hydration of Olivine @ 12GPa

- \(V (\text{Å}^3) = 290.107 + 5.5 \times 10^{-5} \times H_2O \)
 - \((\partial V / \partial H) \)
 - \(H = \text{ppmw} \ H_2O \)

- 8000 ppmw \(H_2O \) in olivine has same effect on STP density as \(\sim 400^\circ C \) temperature rise.

- **Hydration is the third state variable in the equation of state of mantle minerals.**
Compression Experiment
Diamond Anvil Cell
Single-crystal X-ray Diffraction
2 Olivines with quartz in DAC @ 4.4 GPa
Volume Compression

- **Mg-Excess**
 - 8000 ppmw H₂O
 - $K_0 = 120$ GPa
 - $K' = 7.0$

- **Si-Excess**
 - 5000 ppmw H₂O
 - $K_0 = 122$ GPa
 - $K' = 5.8$

- **Dry Olivine**
 - $K_0 = 129$ GPa
 - $K' = \sim 5$
Isothermal Bulk Modulus vs H content

Effect of H on Bulk Modulus

- Ringwoodite
- Wadsleyite
- Olivine

Water Content: wt % H2O

Bulk Modulus: GPa
Hydration of Olivine

Effect of Temperature:
– Maximum H at $\sim 1250^\circ C$
– decreases above 1250° due to melting

• Effect of Pressure:
– Increases with pressure to 12 GPa (410km)

• Effect of Silica Activity:
– Minimal effect if any
Hydration of Olivine

- H becomes compatible at $P > 10$ GPa
- Hydration causes increase in cell volume.
- Hydration causes decreased bulk modulus and seismic velocities.
Earth’s Deep Water Cycle

- Pressure strongly stabilizes H in cation vacancies.
- Decreases K and hence $-V_p$ and V_s (no measurements on olivine).
- In ringwoodite, the effect of hydration on velocity is larger than effect of temperature!
- Hydration increases V_p/V_s
Below 200km H is captured by olivine in the overlying mantle wedge.

H softens the olivine allowing it to lubricate the descent of the cold slab.

H is thus effectively entrained in the descending slab.
Interior Reservoir?

- Nominally Anhydrous Minerals (NAMs) can incorporate up to 9 times the total Ocean mass if saturated.
Water: The Third State Variable in Mantle Dynamics
A hydrous TZ should be thick and slow.
Lateral Velocity Variations in TZ May Reflect Hydration

- Red means Wet
- Blue means Dry
Hydration of Wadsleyite and Ringwoodite is more consistent with model shear velocity structure.
Upcoming Sessions on Water in the Deep Earth:

Fall AGU, San Francisco
“Effect of Hydration on Physical Properties of Mantle Minerals”

MSA Short Course
“Water in Nominally Anhydrous Minerals”

Verbania, Italy October, 2006
Reprints and preprints at

http://ruby.colorado.edu/~smyth/Home.html

smyth@colorado.edu