Velocity crossover between hydrous and anhydrous forsterite at high pressures

Z. Maoa,\ast, S.D. Jacobsenb, F. Jianga, J.R. Smythc, C.M. Hollb,
D.J. Frostd, T.S. Duffya

aPrinceton University, Department of Geosciences, Princeton, NJ 08540, USA
bNorthwestern University, Department of Earth and Planetary Sciences, Evanston, IL 60208, USA
cUniversity of Colorado, Department of Geological Sciences, Boulder, CO 80309, USA
dBayerisches Geoinstitut, Universität Bayreuth, Bayreuth 95440, Germany

Abstract

The elastic properties of hydrous forsterite, Mg\textsubscript{2-x}SiO\textsubscript{4}H\textsubscript{x}, are relevant to interpreting seismic velocity anomalies in the Earth’s mantle. In this study, we used Brillouin scattering to determine the single-crystal elasticity of forsterite with 0.9(1) wt.% H\textsubscript{2}O (x = 0.14) to 14 GPa. Aggregate bulk and shear moduli of hydrous forsterite increase with pressure at a greater rate than those of the corresponding anhydrous phase. Compared with anhydrous forsterite, we observe a 7% increase in the pressure derivative of the bulk modulus (K\textsubscript{S0}' = 4.50(5)), and a 25% increase in the pressure derivative of the shear modulus (G\textsubscript{0}' = 1.75(5)) for forsterite with near its maximum possible water content. Using our results, we calculated the compressional, V\textsubscript{P}, and
shear, V_S, velocities of forsterite as a function of pressure at 300 K. Whereas V_P and V_S of hydrous forsterite are 0.6% and 0.4% slower than those of anhydrous forsterite at ambient pressure, velocity crossovers at \sim3-4 GPa result in larger hydrous forsterite velocities at pressures corresponding to depths below \sim120 km. At the pressure of the 410-km discontinuity, V_P and V_S of hydrous forsterite exceed those of anhydrous forsterite by 1.1(1)% and 1.9(1)%, respectively. This implies that incorporation of water could decrease the magnitude of the velocity contrast at 410-km depth between forsterite and wadsleyite. We estimate that presence of \sim0.4 wt.% H$_2$O in forsterite could lower the P and S velocity contrast at 410-km depth to 3.8(4)% and 4.8(6)%, respectively for a pyrolite mantle. At high pressures, hydration also decreases the V_P/V_S ratio of forsterite, and lowers the maximum P wave azimuthal anisotropy and S wave splitting of forsterite.

1. Introduction

Hydrogen carried into the mantle via subduction could be incorporated into nominally anhydrous mantle minerals as hydroxyl defects (e.g. Smyth, 1987) with implications for water cycling in the Earth (e.g. Bercovici and Karato, 2003; Hirschmann, 2006; Jacobsen and van der Lee, 2006). A number of studies have examined the effect of hydrogen on various physical properties of mantle minerals, including melting (e.g. Inoue, 1994), rheology (e.g. Karato et al., 1986; Mei and Kohlstedt, 2000a,b) and electrical conductivity (Huang et al., 2005; Manthilake et al., 2009; Yoshino et al., 2008), etc. In this study, we focus on the elastic properties, which can also be affected by hydrogen defects (e.g.

* Corresponding author. Now at University of Texas at Austin, Department of Geological Sciences, Jackson School of Geosciences, Austin, TX 78712, USA.

Email address: zhu.mao@jsg.utexas.edu (Z. Mao).
Interpretation of seismic data requires knowledge of the elastic and anelastic properties of mantle minerals at high pressure and temperature. By comparing measured elastic properties and seismic results, we can potentially constrain mantle composition and distinguish regions of hydrogen enrichment from regions of high temperature or partial melt.

Among the main mantle minerals, olivine and its high-pressure polymorphs, wadsleyite and ringwoodite, are particularly important as these constitute \sim60 vol.% of a pyrolite mantle. Olivine polymorphs can accommodate variable amounts of hydrogen into their structures (e.g. Smyth, 1987; Kohlstedt et al., 1996; Bolfan-Casanova et al., 2000; Demouchy et al., 2005). Even though olivine has the lowest hydrogen storage capacity among olivine polymorphs, it is still expected to incorporate a maximum of up to \sim0.5 wt.% H$_2$O at conditions along a mantle geotherm (\sim1400°C at 12 GPa) (Hirschmann et al., 2005; Mosenfelder et al., 2006; Smyth et al., 2006). Experimental and theoretical studies suggest that Mg$^{2+}$ vacancies at the M1 octahedral sites are the main locations of hydration in forsterite (Brodholt, 1997; Churakov et al., 2003; Kudoh, 2008). From infrared spectroscopic studies, it is inferred that hydrogens locate along O-O octahedral edges (Smyth et al., 2006). However, the distribution and location of hydrogen in the structure may depend on a variety of factors including synthesis conditions, Fe content, etc.

Previous studies showed that elastic properties of wadsleyite and ringwoodite are significantly decreased by the presence of hydrogen at ambient conditions (Inoue et al., 1998; Wang et al., 2003; Jacobsen, 2006; Mao et al., 2008a). Based on single-crystal elasticity studies, the addition of 1 wt.% H$_2$O causes \sim7-8% reductions in the bulk, K_{SO},
and shear, G_0, moduli of Mg$_2$SiO$_4$ wadsleyite (Mao et al., 2008a), and ~6-8\% and ~11-14\% reductions in K_{S0} and G_0 of (Mg, Fe)$_2$SiO$_4$ ringwoodite (Inoue et al., 1998; Wang et al., 2003; Jacobsen et al., 2004). Structural vacancies associated with hydration can lead to expanded oxygen distances, weakened interatomic forces, and thus reduced elastic moduli.

Based on static compression studies (e.g. Holl et al., 2008), pressure derivatives of the isothermal bulk moduli of hydrous olivine polymorphs are variable but generally higher than anhydrous values. From single-crystal elasticity studies, the pressure derivatives of the bulk modulus, $K'_{S0} = (\partial K_S/\partial P)_{T0}$, and shear modulus, $G'_{0} = (\partial G/\partial P)_{T0}$, of Fe-free wadsleyite were found to be unaffected by the presence of 0.8 wt.\% H$_2$O (Mao et al., 2008b), but G'_{0} of ringwoodite was slightly increased by an addition of 2.3 wt.\% H$_2$O from 1.5(1) (Li, 2003) to 1.7(1) (Wang et al., 2003). Furthermore, 1 wt.\% H$_2$O in (Mg$_{0.9}$Fe$_{0.1}$)$_2$SiO$_4$ ringwoodite was found to markedly increase K'_{S0} from 4.1(2) to 5.3(4), and G'_{0} from 1.3(1) to 2.0(1) (Sinogeikin et al., 2001; Jacobsen and Smyth, 2006). The higher derivatives result in K_S of hydrous ringwoodite becoming indistinguishable from that of anhydrous ringwoodite at ~12 GPa. Extrapolation to higher pressures at 300 K suggests a potential crossover at ~16 GPa whereby V_P of the hydrous phase would exceed that of anhydrous Fe-bearing ringwoodite (Jacobsen and Smyth, 2006). The nature and distribution of vacancies for a given structure may affect pressure derivatives of elastic moduli. Despite lower initial values, some elastic moduli may stiffen more rapidly with compression due, for example, to strong O-O repulsion associated with vacant sites.

Calculations under Earth’s transition zone conditions indicate that acoustic velocities of Fe-free hydrous wadsleyite will be lower than those of the corresponding anhydrous phase (Mao et al., 2008b). Hydration of mantle wadsleyite thus has the potential to
explain low shear anomalies from seismic observations of the transition zone (e.g. Nolet and Zielhuis, 1994). For ringwoodite, the hydrous phase was found to have a lower shear velocity but similar or greater compressional velocity than the anhydrous phase at close to transition zone pressures (Jacobsen and Smyth, 2006). The discordance between the compressional and shear velocities of hydrous ringwoodite was recently applied to explain velocity anomalies deep in the transition zone beneath central Tibet (Tseng and Chen, 2008).

Compared with wadsleyite and ringwoodite, the elastic properties of olivine are only weakly affected by the presence of hydrogen at ambient conditions. The incorporation of 0.9 wt.% H$_2$O in forsterite, Mg$_2$SiO$_4$, causes only a 0.6% and 0.4% reductions in the compressional and shear velocities, respectively (Jacobsen et al., 2008, 2009). Hydration of upper mantle phases, especially olivine, has been frequently invoked to explain observed velocity anomalies (e.g. Vinnik and Farra, 2007; van der Lee et al., 2008) or uplift and broadening of the 410-km discontinuity (e.g. van der Meijde et al., 2003; Song et al., 2004). However, due to lack of experimental constraints on K'_S and G'_0, effects of hydration on the sound velocities of olivine at Earth’s mantle conditions are still poorly known.

In this study, we report measurements of the single-crystal elasticity of forsterite with 0.9 wt.% H$_2$O to 14 GPa by Brillouin scattering. Studies of the elasticity of Fe-free hydrous phases are useful because they allow separation of the effect of water from that of iron. Using the determined elastic tensor, we obtain the aggregate bulk and shear moduli at each pressure, and constrain their pressure derivatives. The results are applied to evaluate the effect of hydration on seismic images of the upper mantle, the magnitude of the velocity change at 410-km depth, and the anisotropy of forsterite at high pressures.
2. Experimental details

Single crystals of hydrous forsterite were synthesized in the 5000-ton multianvil press at Bayerisches Geoinstitut. The samples (run SZ0408A, Smyth et al. (2006)) were the same ones used in a previous Brillouin study at ambient conditions (Jacobsen et al., 2008, 2009). The H$_2$O content was determined by FTIR spectroscopy using the results of Bell et al. (2003). Determinations of H$_2$O content for our samples require considerable extrapolation of the Bell et al. (2003) calibration. We assign a nominal uncertainty of \sim10%, and note that improved calibration for higher H$_2$O contents is needed. Detailed information about the sample synthesis, including IR spectra, is reported elsewhere (Smyth et al., 2006).

Three platelets of varying crystal orientation were double-side polished to \sim40 μm thickness. Raman spectra were measured for each platelet over spectral ranges from 200 cm$^{-1}$ to 1200 cm$^{-1}$ and from 3000 cm$^{-1}$ to 4000 cm$^{-1}$ to confirm their identity (Fig. S1 and Table S1). The lattice modes are in generally good agreement with data for anhydrous forsterite (Chopelas, 1991) with a slight increase in the frequencies due to hydration (Table S1). The lattice modes of Fe-bearing hydrous olivine have slightly lower frequency than hydrous and anhydrous Mg$_2$SiO$_4$ (Table S1) (Kleppe and Jephcoat, 2006). The Raman spectra show broad OH modes occurring over the range 3475 cm$^{-1}$ to 3614 cm$^{-1}$ which are similar to the range of the major IR peaks in these samples (Smyth et al., 2006), and are consistent with observed OH modes for hydrous olivine ((Mg$_{0.97}$,Fe$_{0.03}$)$_2$SiO$_4$) (Kleppe and Jephcoat, 2006).

Each platelet was loaded in a diamond anvil cell. Steel gaskets with a 250-μm hole pre-indented to 60 to 70 μm thickness were placed between the diamonds. A 16:3:1
methanol-ethanol-water mixture was used as a pressure medium. This liquid composition is known to remain hydrostatic to 10.5 GPa (Angel et al., 2007). Ruby was used for pressure determination. Three to four small ruby spheres were loaded inside the gasket hole and distributed around the sample platelet. Below 10.5 GPa, there were no detectable difference in the pressure obtained from different ruby spheres. Above 10.5 GPa, the difference was controlled to be within 0.1 GPa.

For each platelet, Brillouin spectra were recorded at 10° steps over a 180° range at 6 pressures up to 14 GPa. All Brillouin spectra were measured in a symmetric forward geometry with a 70° scattering angle. A solid state laser with a power of 150 mW and wavelength of 532.15 nm was used to excite the sample. Acoustic velocities, v, were obtained from the measured Brillouin frequency shift, \(\Delta \nu_B \), by:

\[
v = \frac{\Delta \nu_B \lambda_0}{2 \sin(\theta/2)}
\]

(1)

where \(\lambda_0 \) is the incident wavelength and \(\theta \) is the external scattering angle. Fig. 1 shows an example of measured acoustic velocity data. As many as three acoustic modes, one quasi-longitudinal and two quasi-transverse, were observed in some directions. Sinogeikin and Bass (2000) estimate that error sources in the scattering geometry in the diamond anvil cell result in 0.5-1% limits on the precision of the recovered acoustic velocities. For the present study, the precision of repeated measurements in the same direction is within ±0.2% for the shear velocity, and ±0.5% for the compressional velocity. The greater error in compressional velocity is due to lower signal-to-noise ratio. Further experimental details can be found in Speziale and Duffy (2002).
3. Results

Christoffel’s equation describes the relationship between elastic constants, C_{ij}, acoustic velocities, v, and the direction cosines of the phonon propagation direction, n_i:

$$\det[C_{ijkl}n_jn_l - \rho v^2 \delta_{ik}] = 0,$$

(2)

where ρ is the density and the C_{ijkl} are the elastic constants in full suffix notation. Direction cosines, n_i, are determined from the Eulerian angles (θ, ϕ, χ) which relate the laboratory coordinate system to the crystal coordinate system (Shimizu, 1995). For each platelet, the Eulerian angles were determined by single-crystal X-ray diffraction at the X17C beamline of the National Synchrotron Light Source or in the Mineral Structures Laboratory at the University of Colorado. Non-linear least-squares inversion was used (Every, 1980) to fit velocity curves of all platelets to obtain the elastic constants and the orientations at each pressure (Fig. 1). The density at ambient conditions was calculated from measured unit cell volume and water content (Table 1) (Smyth et al., 2006; Jacobsen et al., 2008, 2009). At high pressures, densities were determined self-consistently from the Brillouin data following the procedure described by Speziale and Duffy (2002).

Forsterite belongs to the orthorhombic crystal system and is thus characterized by 9 non-zero, independent elastic constants. Fig. 2 (Fig. S2) shows individual C_{ij} as a function of pressure compared with those of anhydrous forsterite (Zha et al., 1996). The data were fitted to third-order Eulerian finite strain equations to obtain the pressure derivative of each C_{ij} (Table 2). The longitudinal moduli C_{11} and C_{33}, shear modulus C_{44}, and off-diagonal moduli C_{12}, C_{13} and C_{23}, follow similar trends as the anhydrous phase with pressure. Pressure derivatives of these six elastic constants are indistinguishable within
uncertainties from those of the anhydrous phase. Longitudinal modulus, C_{22}, and shear moduli C_{55} and C_{66} increase faster with pressure in hydrous forsterite. In percentage terms, hydration most strongly affects the pressure derivatives of C_{22} (24% larger), C_{55} (27% larger), and C_{66} (17% larger) while all other pressure derivatives are within 10% of anhydrous values. The shear modulus, C_{55}, is 1.6% lower than its anhydrous value at ambient conditions (Jacobsen et al., 2008, 2009), but becomes 4.3% greater at 14.1 GPa. In addition, C_{22} of hydrous forsterite is \sim4.5% greater than that of anhydrous forsterite, and C_{66} are \sim1.5% greater at this pressure. Considering average values of the pressure derivatives of the longitudinal, $\overline{C'_{11}} = (C'_{11} + C'_{22} + C'_{33})/3$, shear, $\overline{C'_{44}} = (C'_{44} + C'_{55} + C'_{66})/3$, and off-diagonal moduli, $\overline{C'_{12}} = (C'_{12} + C'_{13} + C'_{23})/3$, we find that the pressure derivatives of $\overline{C'_{11}}$ and $\overline{C'_{44}}$ are greater for hydrous forsterite than anhydrous fo$_{100}$ or fo$_{90}$, but that mean values of the pressure derivatives of the off-diagonal moduli are similar in hydrous and anhydrous forsterite. Similar results were found for hydrous wadsleyite (Mao et al., 2008b), but in this case, the increase in the mean pressure derivatives of the longitudinal modulus of wadsleyite with hydration is smaller than observed in forsterite.

From the individual C_{ij}s, we calculated the aggregate bulk and shear moduli using the VRH (Voigt-Reuss-Hill) average (Table 1 and Fig. 3). At ambient conditions, the presence of 0.9 wt.% H$_2$O causes a 2.7% reduction in the bulk modulus, K_S, and a 2.2% reduction in the shear modulus, G (Jacobsen et al., 2008, 2009). The difference in bulk moduli between hydrous and anhydrous forsterite decreases with increasing pressure. At 14.1 GPa, the bulk modulus of hydrous forsterite is indistinguishable from that of the anhydrous phase within uncertainty. Fitting the aggregate bulk modulus of hydrous forsterite to a third-order Eulerian finite strain equations yields $K'_{S0} = 4.50(5)$. Compared
with anhydrous forsterite, hydration slightly increases K'_{S0} (Zha et al., 1996). Table 3 compares the K'_{S0} of olivine for different compositions. The addition of 0.9 wt.% H$_2$O affects this pressure derivative by an amount comparable to an addition of 10 to 15 mol% iron in olivine. A recent theoretical study (Liu et al., 2009) on the elasticity of hydrous forsterite using first-principle methods also find that hydration would slightly increase K'_{S0} of forsterite.

The effect of hydration on G'_0 of forsterite is more pronounced, and this also agrees with the first-principle calculation results (Liu et al., 2009). Beyond \sim 6 GPa, the shear modulus of hydrous forsterite exceeds that of anhydrous forsterite (Fig. 3). At 14.1 GPa, the shear modulus of hydrous forsterite is 2.5% greater than that of anhydrous forsterite.

Using third-order Eulerian finite strain equations, we obtained a pressure derivative of the shear modulus $G'_0=1.75(5)$ for the hydrous phase, considerably greater than that of anhydrous forsterite ($G'_0 = 1.4(1)$). Addition of 0.9 wt.% H$_2$O has a much greater effect on G'_0 than an addition of 10 mol% of iron, and yields a G'_0 value comparable to that for the Fe endmember fayalite (Table 3).

4. Discussion

4.1. Effect of hydration on elastic wave velocities of forsterite

Using our new data, we investigate the effect of hydration on aggregate sound velocities of forsterite with depth. We assume the elasticity of forsterite varies linearly with H$_2$O content at ambient conditions (Jacobsen et al., 2008, 2009). Also, we assume a linear relationship between H$_2$O content and the pressure derivatives of the bulk and shear moduli. Compressional and shear velocities are computed using third-order finite strain
theory. Since the effect of temperature on the elasticity of hydrous olivine polymorphs is currently not available, all the calculations below were performed at 300 K.

Fig. 4 shows the calculated P and S wave velocities of forsterite with 0.9 wt.% H$_2$O compared with dry conditions at 300 K. At 1-bar pressure, the compressional (V_P), bulk (V_B), and shear (V_S) velocities of hydrous forsterite are slower than velocities in the anhydrous phase by 0.6%, 0.7% and 0.4% respectively (Fig. 5) (Jacobsen et al., 2008, 2009). Because of the larger pressure derivatives of K_S and G, aggregate sound velocities of hydrous forsterite increase more rapidly with pressure than anhydrous forsterite. The velocity of the hydrous phase crosses and exceeds that of the anhydrous phase occurs at about 4 GPa for V_P, and 3 GPa for V_S. This velocity crossover corresponds to depths in the Earth of \sim120 km, and 90 km, respectively. Due to the small effects of hydrogen on K_{SP}', the difference in V_B between hydrous and anhydrous forsterite is within the uncertainty of the calculation over the whole pressure range. For V_P and V_S, the velocities of the hydrous phase are 1.1(1)% and 1.9(1)% faster than those of the anhydrous phase at 13.7 GPa (410-km depth) (Fig. 5), respectively. The presence of 0.9 wt.% H$_2$O in forsterite increases the compressional velocity gradient from 0.0021(3) s$^{-1}$ to 0.0025(2) s$^{-1}$ from 200 to 400-km depth, and the shear velocity gradient from 0.0006(3) s$^{-1}$ to 0.0010(1) s$^{-1}$.

In Earth’s mantle, the maximum water storage capacity will vary with depth but is expected to be generally lower than the H$_2$O content in our samples. The variation of the maximum water storage capacity of olivine with depth was estimated in previous experimental studies (Mosenfelder et al., 2006; Hauri et al., 2006). In the study of Hauri et al. (2006), H$_2$O contents in olivine coexisting with melt were determined at various P-T conditions using Secondary Ion Mass Spectroscopy on quenched samples. The H$_2$O
storage capacity of olivine along the H$_2$O-saturated solidus was found to be low near
ambient but increased steadily with pressure eventually reaching a value of 0.9 wt.\% at 13 GPa. Aggregate sound velocities calculated using this variable water content with
depth are also shown in Fig. 4 and 5 for comparison. In this case, the velocities of
hydrous olivine become steadily faster than those of anhydrous olivine below 200-km
depth because of the combined effects of the higher elastic properties of the hydrous
phase and the increased H$_2$O storage capacity of olivine with depth.

When interpreting seismic profiles and images, the effects of anelasticity may also need
to be accounted for (Karato, 1993; Jackson et al., 2002). Hydrogen may enhance anelas-
ticity (Karato, 1995; Aizawa et al., 2008) and lead to a reduction in the sound velocities
of olivine. This may offset the increase in the anharmonic component velocity for hydrous
forsterite observed here. Further examination of the elastic and anelastic properties of
hydrous phases at mantle P-T conditions and H$_2$O contents will be addressed in a later
publication.

4.2. V_P/V_S ratio of hydrous forsterite

The V_P/V_S ratio is commonly used to identify compositional variations in the Earth’s
mantle. Here, we investigate the effect of hydration on the V_P/V_S ratio of forsterite (Fig.
6). The calculation, following the method outlined in section 4.1, is carried out for 300
K conditions, but it should be noted that temperature may also affect the V_P/V_S ratio
(Isaak et al., 1989; Sinogeikin et al., 2003).

At ambient pressure, the V_P/V_S ratios of hydrous and anhydrous forsterite are almost
the same, $\sim 1.706(5)$. With pressure, V_P/V_S weakly increases. At pressure corresponding
to 410-km depth, the V_P/V_S of hydrous forsterite is increased to 1.770(6) compared
to 1.783(6) for the anhydrous phase, a difference of 0.7%. A similar decrease in the
V_P/V_S ratios caused by hydration was observed for ringwoodite (Wang et al., 2006).
This contrasts with the behavior of Fe-bearing ringwoodite for which a 2.3% increase in
V_P/V_S was observed in the hydrous phase relative to anhydrous ringwoodite (Sinogeikin
et al., 2003; Jacobsen and Smyth, 2006).

Increasing temperature or addition of iron will increase the V_P/V_S ratio of forsterite.
Variation of 100 K in temperature or 10 mol.% iron would cause a 0.12% or a 1.4%
increase in the V_P/V_S ratio, respectively. Thus, the effect of 0.9 wt.% H$_2$O on the V_P/V_S
ratio of forsterite at pressures corresponding to 410-km depth is equivalent to a \sim600 K
temperature reduction or a 5 mol.% reduction in Fe content.

4.3. Effect of water on the velocity contrast at 410-km depth

The 410-km discontinuity is characterized by \sim4-5% increase in the compressional and
shear wave velocities in the mantle (e.g. Grand and Helmberger, 1984; Kennett et al.,
1995). The olivine to wadsleyite phase transition is widely accepted as the major cause
of the 410-km discontinuity. Mao et al. (2008b) reported that the velocity contrast be-
tween olivine and wadsleyite at 410-km depth decreases with increasing H$_2$O content in
wadsleyite, due to the strong reduction in elastic wave velocities in hydrous wadsleyite.
However, the discussion in Mao et al. (2008b) was restricted to a comparison between
hydrous wadsleyite and anhydrous forsterite. Here, we re-examine the effect of hydration
on the velocity contrast at 410-km discontinuity using new experimental data on hy-
drous forsterite. The calculation is performed at 300 K, and the H$_2$O partition coefficient
between forsterite and wadsleyite is assumed to be 2 (Frost and Dolejš, 2007).

As discussed above, hydration increases V_P and V_S of forsterite at high pressures, and this results in a decrease in the forsterite-wadsleyite velocity contrast at 410-km depth.

For a dry mantle, the velocity contrast between forsterite and wadsleyite is 9.1(7)\% for compressional waves, and 11.3(10)\% for shear waves. For a pyrolite mantle with 60 vol.\% olivine, the corresponding velocity contrast would be 5.5(4)\% for compressional waves, and 6.8(6)\% for shear waves. If the mantle H$_2$O content is below saturation, for example, 0.2 wt.\% H$_2$O in forsterite, and using K'_s and G'_0 of hydrous forsterite determined in this study, the compressional and shear velocity contrasts are decreased to 4.6(4)\% and 5.8(4)\% respectively. These velocities contrasts are slightly lower than those reported by Mao et al. (2008b). Large shear velocity contrasts of this magnitude are observed in some regional studies (e.g. AU3, Gaherty et al. (1999)). With \sim0.4 wt.\% H$_2$O in olivine at 410-km depth, the compressional and shear velocity contrasts are further reduced to 3.8(4)\% and 4.8(6)\%, respectively. These are close to observed values in many regional and global seismic studies. Thus, the velocity contrast between mineralogical modeling and seismic studies could be reconciled if Earth’s mantle contains a on average \sim0.4 wt.\% H$_2$O in olivine for a pyrolite composition. Regional variations in water content may help explain the variable magnitude of the 410-km discontinuity in seismic studies. Further measurements on Fe-bearing samples and samples at high temperature will supply additional constraints on the effect of hydration on the velocity contrast at 410-km depth.
4.4. Anisotropy of hydrous forsterite at high pressures

Seismic anisotropy is observed in the upper mantle (e.g. Silver, 1996; Ekström and Dziewonski, 1998), and is believed to be caused by the lattice-preferred orientation (LPO) of minerals (e.g. Mainprice, 2007). For known LPO, the seismic anisotropy can be calculated from the elastic tensor of the constituent single crystals. As the dominant phase in the upper mantle, the behavior of olivine is essential to understand the anisotropic structure of the upper mantle.

Azimuthal anisotropy describes the dependence of velocity on direction of propagation. Fig. 7 shows the azimuthal anisotropy of V_P for anhydrous and hydrous forsterite single crystals. At ambient conditions, hydration slightly lowers the compressional wave azimuthal anisotropy, $A_P = (V_{P,max} - V_{P,min})/V_{P,aggr}$, of forsterite from 24.7% to 23.9% (Jacobsen et al., 2008, 2009). With compression, the anisotropy of forsterite is reduced. A_P of anhydrous forsterite decreases to 21.2% at 14.1 GPa. At the same pressure, A_P of hydrous forsterite exhibits a stronger decrease from 23.9% to 15.4%. Thus, hydration decreases the compressional wave anisotropy of forsterite at high pressures.

Polarization anisotropy, $A_{Po}^S = (V_{S1} - V_{S2})/V_S$, is the percentage difference in the velocity of the two shear waves propagating in a given direction. Fig. 7 shows the calculated shear wave splitting of hydrous and anhydrous forsterite. At ambient conditions, the maximum A_{Po}^S of forsterite is the same within uncertainty for hydrous and anhydrous forsterite. At 14.1 GPa, the maximum A_{Po}^S of hydrous forsterite is 12.5%, which is lower than that of anhydrous forsterite (13.5%) at this pressure. Thus, similar to A_P, the presence of hydrogen modestly decreases the maximum shear wave splitting in forsterite at high pressures.
5. Conclusions

The single-crystal elastic constants of forsterite with 0.9 wt.% H$_2$O were measured up to 14.1 GPa at room temperature. Although the bulk and shear moduli of hydrous forsterite are offset to a lower value compared with the anhydrous phase at ambient conditions, they are similar to or greater than those of the anhydrous phase at pressures corresponding to the base of the upper mantle. The addition of 0.9 wt.% H$_2$O in forsterite increases the pressure derivatives of the bulk modulus, K'_{SO} from 4.2(2) to 4.50(5) and that of the shear modulus, G'_{0} from 1.4(1) to 1.75(5).

Using our experimental results, we investigated the effect of hydration on aggregate sound velocities of forsterite. Although the velocity of hydrous forsterite is slightly lower than that of the anhydrous phase at 1-bar pressure, a velocity crossover occurs around 3-4 GPa. At 410-km depth, incorporation of 0.9 wt.% H$_2$O to forsterite increases the compressional and shear wave velocities by 1.1% and 1.9%, respectively. This velocity inversion is consistent with the trend observed for hydrous ringwoodite reported by Jacobsen and Smyth (2006). In addition, hydration decreases the V_P/V_S ratio of forsterite by 0.7%. At 14.1 GPa, hydration decreases the maximum compressional wave azimuthal anisotropy for single crystals from 21.2% to 15.4%, and the maximum shear wave splitting from 13.5% to 12.5%.

6. Acknowledgments

We thank J. Hu for assistance with X-ray measurements at X17C, NSLS. The petrophysics software used to calculate anisotropy is from David Mainprice. J. R. Smyth and S. D. Jacobsen acknowledge support from the Bayerisches Geoinstitut Visitors Program.
7. Figure captions

Fig. 1. Acoustic velocities of hydrous forsterite at 14.1 GPa. Open symbols are measurements; circle: P-wave velocity; triangle: fast S-wave velocity; square: slow S-wave velocity; solid lines: fitting results. The crystallographic orientation of each platelet is indicated. Root-mean-square difference between calculated and measured velocities is 53 m/s.

Fig. 2: Single-crystal elastic moduli of hydrous forsterite as a function of pressure. Solid symbols and lines: 0.9 wt.% H$_2$O, hydrous forsterite (fo$_{100}$), this study; open symbols and dashed lines: anhydrous forsterite (Zha et al., 1996).

Fig. 3: Aggregate elastic moduli of forsterite as a function of pressure. Solid circle: hydrous forsterite (fo$_{100}$, Mg$_2$SiO$_4$), this study; open circle: anhydrous forsterite (Zha et al., 1996); diamond: Fe-bearing anhydrous forsterite (fo$_{90}$, (Mg$_{0.9}$Fe$_{0.1}$)$_2$SiO$_4$) (Abramson et al., 1997); square: fayalite (fa, Fe$_2$SiO$_4$) (Speziale et al., 2004).

Fig. 4: Aggregate compressional, shear and bulk sound velocity of forsterite as a function of pressure at 300 K. Solid symbols: measured data for forsterite with 0.9 wt.% H$_2$O; dotted line: dry; dashed line: H$_2$O varies with pressure according to Hauri et al. (2006). Representative uncertainties (1σ) are shown. Depths along top axis are obtained from Earth model PREM (Dziewonski and Anderson, 1981).

Fig. 5: Velocity change of forsterite caused by hydration relative to dry forsterite with
pressure. $\Delta V_X/V_X$ is $(V_{X}^{Hyp} - V_{X}^{dry})/V_{X}^{dry}$, where X is P, S or B for compressional, shear and bulk velocity, respectively. Dashed line is for 0 reference. fo, 0.9 wt.% H$_2$O: hydrous forsterite containing 0.9 wt.% H$_2$O, and the constant water content with pressure; H$_2$O variable with P: water content in forsterite varies with pressure according to Hauri et al. (2006). Representative uncertainties (1σ) are shown.

Fig. 6: The V_P/V_S ratio of forsterite with varying hydrogen content at ambient temperature. Dotted line: anhydrous (Zha et al., 1996); dashed line: 0.4 wt.% H$_2$O; solid line: 0.9 wt.% H$_2$O; dot-dashed line: anhydrous fo$_{90}$ (Abramson et al., 1997); squares: fo$_{100}$ at 300 K, 800 K and 1400 K (Isaak et al., 1989). Representative uncertainties (1σ) are shown.

Fig. 7: Elastic anisotropy of single-crystal forsterite. Left panels show azimuthal V_P anisotropy and right panels show shear wave splitting as a function of pressure. (a) anhydrous forsterite at ambient conditions (Suzuki et al., 1983); (b) hydrous forsterite (0.9 wt.% H$_2$O) at ambient conditions (Jacobsen et al., 2008, 2009); (c) anhydrous forsterite at 14.1 GPa (Zha et al., 1996); (d) hydrous forsterite (0.9 wt.% H$_2$O) at 14.1 GPa, this study.

References

Every, A. G., 1980. General closed-form expressions for acoustic waves in elastically

Frost, D. J., Dolejš, D., 2007. Experimental determination of the effect of H₂O on the

mantle compositions using fine-scale models of the 410-km discontinuity. Geophys. Res.
Lett. 26, 1641–1644.

the Earth’s upper mantle at H₂O-undersaturated conditions. Earth Planet. Sci. Lett.
248, 715–734.

Earth Planet. Sci. 34, 629–653.

Hirschmann, M. M., Aubaud, C., Withers, A. C., 2005. Storage capacity of H₂O in
nominally anhydrous minerals in the upper mantle. Earth Planet. Sci. Lett. 236, 167–
181.

Huang, X. G., Xu, Y. S., Karato, S., 2005. Water content in the transition zone from

Inoue, T., 1994. Effect of water on melting phase relations and melt composition in the
system Mg₂SiO₄-MgSiO₃-H₂O up to 15 GPa. Phys. Earth Planet. Inter. 85, 237–263.

Manthilake, M. A. G. M., Matsuzaki, T., Yoshino, T., Yamashita, S., Ito, E., Katsura,

Sinogeikin, S. V., Bass, J. D., Katsura, T., 2001. Single-crystal elasticity of γ-($\text{Mg}_{0.91}\text{Fe}_{0.09})_2\text{SiO}_4$ to high pressures and to high temperatures. Geophys. Res. Lett. 28, 4335–4338.

Table 1
Single-crystal and aggregate elastic moduli of hydrous forsterite at high pressures

<table>
<thead>
<tr>
<th>P (GPa)</th>
<th>ρ (g/cm³)</th>
<th>C₁₁ (GPa)</th>
<th>C₂₂ (GPa)</th>
<th>C₃₃ (GPa)</th>
<th>C₄₄ (GPa)</th>
<th>C₅₅ (GPa)</th>
<th>C₆₆ (GPa)</th>
<th>C₁₂ (GPa)</th>
<th>C₁₃ (GPa)</th>
<th>C₂₃ (GPa)</th>
<th>Kₛ (GPa)</th>
<th>G (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0001</td>
<td>3.180(3)</td>
<td>314.4(6)</td>
<td>194.6(5)</td>
<td>233.7(7)</td>
<td>65.8(3)</td>
<td>79.9(2)</td>
<td>78.4(4)</td>
<td>69.7(6)</td>
<td>67.0(6)</td>
<td>70.0(6)</td>
<td>125.4(2)</td>
<td>79.6(1)</td>
</tr>
<tr>
<td>3.0</td>
<td>3.253(3)</td>
<td>329(3)</td>
<td>217(3)</td>
<td>252(3)</td>
<td>71(3)</td>
<td>83.2(13)</td>
<td>85.8(12)</td>
<td>72(2)</td>
<td>79.3(5)</td>
<td>78(5)</td>
<td>137.7(11)</td>
<td>84.8(8)</td>
</tr>
<tr>
<td>6.6</td>
<td>3.334(3)</td>
<td>355(4)</td>
<td>236(3)</td>
<td>261(4)</td>
<td>77.4(9)</td>
<td>91(1)</td>
<td>92.6(9)</td>
<td>85(3)</td>
<td>91.5(9)</td>
<td>95(2)</td>
<td>153.0(11)</td>
<td>89.7(8)</td>
</tr>
<tr>
<td>8.5</td>
<td>3.374(3)</td>
<td>379(5)</td>
<td>244(3)</td>
<td>268(4)</td>
<td>80.0(9)</td>
<td>94.7(13)</td>
<td>96.2(10)</td>
<td>94(3)</td>
<td>94(3)</td>
<td>97(2)</td>
<td>159.9(9)</td>
<td>93.2(9)</td>
</tr>
<tr>
<td>10.7</td>
<td>3.419(3)</td>
<td>388(5)</td>
<td>263(3)</td>
<td>295(5)</td>
<td>83.3(9)</td>
<td>100.1(10)</td>
<td>100.4(10)</td>
<td>102(4)</td>
<td>100(7)</td>
<td>110(3)</td>
<td>172.7(12)</td>
<td>97.7(6)</td>
</tr>
<tr>
<td>11.9</td>
<td>3.443(3)</td>
<td>390(4)</td>
<td>266(4)</td>
<td>304(5)</td>
<td>85.9(9)</td>
<td>100.9(10)</td>
<td>101.7(10)</td>
<td>105(4)</td>
<td>100(5)</td>
<td>112(3)</td>
<td>175.6(12)</td>
<td>99.2(6)</td>
</tr>
<tr>
<td>14.1</td>
<td>3.485(3)</td>
<td>403(4)</td>
<td>296(4)</td>
<td>307(5)</td>
<td>87.6(10)</td>
<td>102.5(10)</td>
<td>104.8(10)</td>
<td>117(4)</td>
<td>108(4)</td>
<td>120(3)</td>
<td>187.2(12)</td>
<td>102.0(4)</td>
</tr>
</tbody>
</table>

1 bar data are from Jacobsen et al. (2008, 2009).

Kₛ and G are Voigt-Reuss-Hill averages.

Table 2
Pressure derivatives of individual C₁₁ of hydrous forsterite

<table>
<thead>
<tr>
<th>C₁₁</th>
<th>This study</th>
<th>anhydrous fo₁₀₀ ¹</th>
<th>anhydrous fo₉₀ ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.0(2)</td>
<td>6.7(2)</td>
<td>6.54</td>
<td></td>
</tr>
<tr>
<td>6.7(1)</td>
<td>5.4(1)</td>
<td>5.38</td>
<td></td>
</tr>
<tr>
<td>5.5(5)</td>
<td>5.2(1)</td>
<td>5.51</td>
<td></td>
</tr>
<tr>
<td>1.8(1)</td>
<td>1.7(1)</td>
<td>1.67</td>
<td></td>
</tr>
<tr>
<td>1.9(1)</td>
<td>1.5(1)</td>
<td>1.81</td>
<td></td>
</tr>
<tr>
<td>-0.070</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1(1)</td>
<td>1.8(1)</td>
<td>1.93</td>
<td></td>
</tr>
<tr>
<td>3.5(1)</td>
<td>3.7(1)</td>
<td>3.86</td>
<td></td>
</tr>
<tr>
<td>3.1(2)</td>
<td>3.4(1)</td>
<td>3.57</td>
<td></td>
</tr>
<tr>
<td>3.6(1)</td>
<td>3.5(1)</td>
<td>3.37</td>
<td></td>
</tr>
</tbody>
</table>

¹fo₁₀₀: forsterite, Mg₂SiO₄ (Zha et al., 1996)
²fo₉₀: olivine, (Mg₀.₉Fe₀.₁)₂SiO₄ (Abramson et al., 1997)
Table 3
Pressure derivatives of the aggregate bulk and shear moduli for compositions along forsterite-fayalite join

<table>
<thead>
<tr>
<th>ref.</th>
<th>Composition</th>
<th>K'_S^{0}</th>
<th>G'_0^{0}</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study</td>
<td>fo$_{100}$ a (0.9 wt.% H$_2$O)</td>
<td>4.50(5)</td>
<td>1.75(5)</td>
</tr>
<tr>
<td>Zha et al. (1996)</td>
<td>fo$_{100}$</td>
<td>4.2(2)</td>
<td>1.4(1)</td>
</tr>
<tr>
<td>Abramson et al. (1997)</td>
<td>fo$_{90}$ b</td>
<td>4.4(1)</td>
<td>1.5(1)d</td>
</tr>
<tr>
<td>Speziale et al. (2004)</td>
<td>fo$_{0}$ c</td>
<td>4.9(1)</td>
<td>1.8(1)e</td>
</tr>
</tbody>
</table>

afo$_{100}$: forsterite, Mg$_2$SiO$_4$.

bfo$_{90}$: olivine, (Mg$_{0.5}$Fe$_{0.1}$)$_2$SiO$_4$.

cfo$_{0}$: fayalite, Fe$_2$SiO$_4$.

drefit using third-order Eulerian strain equation of state.

eG$''_0$ is -0.11(1) GPa$^{-1}$.

27