X-ray Diffraction

Mineral identification

Mode analysis

Structure Studies

X-ray Generation

- X-ray tube (sealed)
- Pure metal target (Cu)
- Electrons remove inner-shell electrons from target.
- Other electrons “fall” into hole to emit an X-ray photon.

X-ray Spectrum from Tube

Diffraction

- Diffraction is the coherent scattering of waves from a periodic array of scatterers.
- The wavelength of light is about half a micron
- Light is diffracted by the tracks in a CD.
- The wavelengths of X-rays is about the same as the interatomic distances in crystals.
X-ray Scattering

- A single atom in space interacts with an X-ray photon.

X-Ray Diffraction

- Atoms in a periodic array separated by distance \(d \) will scatter in phase when the path length difference is an integral number of wavelengths.
- Path length difference \(B-C-D = n\lambda \)
- \(n\lambda = 2d \sin \theta \)

Single-crystal Diffraction

- The unit cell \(a, b, c, \alpha, \beta, \gamma \)
- Crystal System
- Lattice type (\(P, A, B, C, I, F, R \))
- Point Group (Laue symmetry)
- Space Group
- Crystal Structure Determination
 - Atom position (fractional coordinates)
 - Element ordering (# electrons per site)

Diffraction

- Intensities can be calculated knowing the position and scattering characteristics of each atom.
- \(F_{hkl} \) = square root of integrated intensity.
- \(f_j \) = scattering of atom \(j \) at angle \(2\theta \)
- Atom \(j \) located at fractional coordinates \(x_j, y_j, z_j \).
Structure Factors

- The structure factor, F, is the square root of the measured integrated intensity.

Structure Factors (complex number)

$$ F_{hkl} = \sum_{j=1}^{n} f_j (\cos \phi + i \sin \phi) $$

$$ \phi = 2\pi (hx_j + ky_j + lz_j) $$

Structure Factors (Centro-symmetric crystals)

- If, for every atom, j, at (x_j, y_j, z_j), there is an identical atom at $(-x_j, -y_j, -z_j)$.
- The imaginary term in the equation is zero.

$$ F_{hkl} = \sum_{j=1}^{n} 2f_j (\cos \phi) $$

Systematic Extinction

- If, for every atom, j, at (x_j, y_j, z_j), there is an identical atom at $(1/2+x_j, 1/2+y_j, 1/2+z_j)$, (body centering)
- The structure factor is zero for $h + k + l = 2n+1$ (h+k+l odd) for all hkl.
- So, systematic extinction of structure factors tells us which symmetry operators are present.

Systematic Extinction

- Lattice centering Operations
 - For all hkl
 - F: hkl all even or all odd
 - I: $h+k+l = 2n$
 - A: $k+l = 2n$
 - B: $h+l = 2n$
 - C: $h+k = 2n$
- The Structure Factor, F, is zero for all hkl not meeting above relations.

- This means that lattice centering operations are determined from systematic absences.
Systematic Extinction

- Glide planes
 - a glide normal to c: for hk0, \(h = 2n \)
 - b-glide normal to c: for hk0, \(k = 2n \)
 - n-glide normal to c: for hk0, \(h+k = 2n \)
 - a-glide normal to b: for h0l, \(h = 2n \)
 - c-glide normal to b: for h0l, \(l = 2n \)
 - n-glide normal to b: for h0l, \(h+l = 2n \)
 - b-glide normal to a: for 0kl, \(k = 2n \)
 - c-glide normal to a: for 0kl, \(l = 2n \)
 - n-glide normal to a: for 0kl, \(k+l = 2n \)

Reciprocal Lattice

- The reciprocal lattice is a mathematical construct of points each corresponding to a given Miller index, \(hkl \).
- It is a three dimensional lattice where the nodes are diffracted intensities and the spacing between points is inversely proportional to the unit cell parameters in real space.

Reciprocal Lattice

- Reciprocal axes are denoted
 - \(a^* \), \(b^* \), \(c^* \), \(\alpha^* \), \(\beta^* \), \(\gamma^* \)
- For Orthorhombic
 - \(a^* = 1/a \) ; \(b^* = 1/b \) ; \(c^* = 1/c \)
- Scale is arbitrary

Wadsleyite Imma

<table>
<thead>
<tr>
<th>H K L</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7Å</td>
<td></td>
</tr>
<tr>
<td>11.5Å</td>
<td></td>
</tr>
<tr>
<td>8.3Å</td>
<td></td>
</tr>
</tbody>
</table>

Each spot is a 'reflection'
Tail is from white radiation

Four-Circle Diffractometer

![Four-Circle Diffractometer Diagram]
Four-Circle Diffractometer

CCD Image
Single crystal
0.5° rotation
10s exposure
72 images for orientation.

Gives unit cell:
\(a, b, c, \alpha, \beta, \gamma \)

Crystal system
Point group
Four-Circle Diffractometer

Diffraction Experiment

- Mount Crystal (~100μm)
- Measure 50 – 100 ‘random’ frames
- Locate Bragg reflections
- Index and obtain UB matrix
- Refine unit cell parameters (1/10^4)
- Measure Intensities (1000 - 10000)
- Determine or refine atom position and displacement parameters

Crystal on goniometer head:
- Crystal is ~100μm.
- Glued on a glass fiber.
- Mount is in 3mm Al tube.
- Goniometer has x, y, z translations for centering.

CCD Image
- Single crystal
- 0.5° rotation
- 10s exposure
- 72 images for orientation.

Reciprocal Lattice from orientation images
Indexed Unit Cell from 60 reflections

Reduced Unit Cell found:

<table>
<thead>
<tr>
<th>Method: Difference Vectors</th>
<th>HKL histogram:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score: 0.06</td>
<td>1.0: 0.35 (560)</td>
</tr>
<tr>
<td>a = 3.07Å, c = 75.10°, V = 93Å³</td>
<td>0.25: 25.05 (1560)</td>
</tr>
<tr>
<td>b = 3.39Å, β = 75.10°</td>
<td>0.3: 56.75 (1462)</td>
</tr>
<tr>
<td>c = 4.72Å, γ = 90.01°</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method: Fast Fourier Transform</th>
<th>HKL histogram:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score: 380</td>
<td>1.0: 0.35 (560)</td>
</tr>
<tr>
<td>a = 4.77Å, c = 90.40°, V = 293Å³</td>
<td>0.25: 25.05 (1560)</td>
</tr>
<tr>
<td>b = 6.28Å, β = 92.29°</td>
<td>0.3: 56.75 (1462)</td>
</tr>
<tr>
<td>c = 3.99Å, γ = 90.01°</td>
<td></td>
</tr>
</tbody>
</table>

Bravais Symmetry chooses Orthorhombic P

<table>
<thead>
<tr>
<th>Bravais Lattice</th>
<th>FUM</th>
<th>a [Å]</th>
<th>b [Å]</th>
<th>c [Å]</th>
<th>α°</th>
<th>β°</th>
<th>γ°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubic F</td>
<td>0.01</td>
<td>12.72</td>
<td>12.75</td>
<td>12.77</td>
<td>92.14</td>
<td>73.33</td>
<td>136.27</td>
</tr>
<tr>
<td>Cubic I</td>
<td>0.01</td>
<td>11.26</td>
<td>7.61</td>
<td>11.92</td>
<td>92.53</td>
<td>38.61</td>
<td>75.12</td>
</tr>
<tr>
<td>Cubic P</td>
<td>0.01</td>
<td>4.74</td>
<td>5.97</td>
<td>10.22</td>
<td>90.26</td>
<td>90.06</td>
<td>90.29</td>
</tr>
<tr>
<td>Hexagonal P</td>
<td>0.01</td>
<td>4.74</td>
<td>5.97</td>
<td>10.22</td>
<td>90.26</td>
<td>90.06</td>
<td>90.29</td>
</tr>
<tr>
<td>Rhombohedral R</td>
<td>0.01</td>
<td>4.74</td>
<td>7.61</td>
<td>31.50</td>
<td>92.92</td>
<td>90.75</td>
<td>120.25</td>
</tr>
<tr>
<td>Tetragonal I</td>
<td>0.02</td>
<td>4.74</td>
<td>5.97</td>
<td>21.70</td>
<td>74.40</td>
<td>77.57</td>
<td>90.29</td>
</tr>
<tr>
<td>Tetragonal P</td>
<td>0.03</td>
<td>4.74</td>
<td>5.97</td>
<td>10.22</td>
<td>90.26</td>
<td>90.06</td>
<td>90.29</td>
</tr>
<tr>
<td>Orthorhombic F</td>
<td>0.01</td>
<td>4.74</td>
<td>12.83</td>
<td>20.99</td>
<td>85.02</td>
<td>103.12</td>
<td>111.39</td>
</tr>
<tr>
<td>Orthorhombic I</td>
<td>0.03</td>
<td>4.74</td>
<td>5.97</td>
<td>21.70</td>
<td>74.40</td>
<td>77.57</td>
<td>90.29</td>
</tr>
<tr>
<td>Orthorhombic C</td>
<td>0.03</td>
<td>7.61</td>
<td>7.65</td>
<td>10.22</td>
<td>90.16</td>
<td>90.24</td>
<td>76.87</td>
</tr>
<tr>
<td>Monoclinic C</td>
<td>0.03</td>
<td>7.61</td>
<td>7.65</td>
<td>10.22</td>
<td>89.84</td>
<td>90.24</td>
<td>103.13</td>
</tr>
<tr>
<td>Monoclinic P</td>
<td>0.49</td>
<td>5.97</td>
<td>4.74</td>
<td>10.22</td>
<td>90.06</td>
<td>90.26</td>
<td>90.29</td>
</tr>
<tr>
<td>Triclinic P</td>
<td>1.00</td>
<td>4.74</td>
<td>5.97</td>
<td>10.22</td>
<td>90.26</td>
<td>90.06</td>
<td>90.29</td>
</tr>
</tbody>
</table>

Flip b and c- axes
a = 4.75Å
b = 10.19Å
c = 5.98Å
α = β = γ = 90°
To match known cell.

Set up data collection:
6232 images of 10s each (~24h).

Integrate images: Find reflections and calculate intensities.
Integrate images: Refine cell and matrix

Scale: find reflections in more than one scan and determine scale factor for scans.

Scale: find reflections in more than one image and determine scale factor for scans.

Scale: Determine \(R_{\text{int}} \) for the various scans and get \(hkl \) file:

\[
\begin{array}{ccc}
 h & k & l \\
 F^2 & \sigma & r_d \\
\end{array}
\]

A list of relative intensities of ‘reflections’

INS file for SHELX:

TITL
CELL
LATT
SYMM
SFAC
UNIT
L.S.
LIST
Atom list
Typical refinement procedure:

1. Overall scale with atoms from known structure.
2. Atom positions (fractional coordinates within unit cell) and isotropic displacements
3. Occupancies
4. Anisotropic displacements

R-factors

1. \(R_1 = \frac{\text{sum} (F_{\text{obs}} - F_{\text{calc}})}{\text{sum} (F_{\text{obs}})} \)
2. Program (SHELXL) minimizes \(\text{sum} (F_{\text{obs}} - F_{\text{calc}}) \) or \((F^2_{\text{obs}} - F^2_{\text{calc}}) \) by least squares adjustments of atom \(x, y, z \) coordinates, occupancy, and displacements.

Each atom modeled with a scattering factor, position, occupancy, and displacement (sphere (1) or ellipsoid(6))

Objectives:

Determine new structure.

Refine atom positions \(x, y, z \) to get interatomic distances.

Determine site occupancies to get cation ordering or determine vacancies (thermal or pressure history).

INS file for SHELXL:

SHELXL reads INS and hkl files and refines coordinates and displacement parameters to minimize \(F_{\text{obs}} - F_{\text{calc}} \). Output is .res file in same format as .ins. Also a list file of changes.

INS file for SHELXL:

Look at list file to see results.

Edit the .res file and rename it as .ins and run it again.