Space Groups

Internal Symmetry of Crystals

Fractional Coordinates

• We describe the position of any atom within the unit cell in terms of fractions of the unit cell edge.
 – The corner is thus (0, 0, 0)
 – The center is (.5, .5, .5)
• The symmetry operations will then repeat atoms within the box.

Space Groups

• If translation operations are included with rotation and inversion,
• We have 230 three-dimensional space groups.
• Translation operations
 – Unit cell translations
 – Centering operations (Lattices) (A, B, C, I, F, R)
 – Glide planes (reflection + translation) (a, b, c, n, d)
 – Screw axes (rotation + translation) (21, 31, 32)

Lattices (centering operations)

• A symmetry operation within the unit cell that generates equivalent atom positions within the cell.

Fractional Coordinates

Lattices (centering operations)

• P is for primitive
 – No centering operation

Space Groups

• 230 three-dimensional space groups
• Hermann-Mauguin symbols. (4 positions)
• First position is Lattice type (P, A, B, C, I, F or R)
• Second, third and fourth positions as with point groups

Lattices (centering operations)
Lattices

- **A, B, and C are end-centered**

 - A: for any atom at x, y, z, there is an identical atom at x, 0.5+y, 0.5+z
 - B: for any atom at x, y, z, there is an identical atom at 0.5+x, y, 0.5+z
 - C: for any atom at x, y, z, there is an identical atom at 0.5+x, 0.5+y, z

Lattices

- **A**, **B**, and **C**

 - A: (0, 0.5, 0.5)
 - B: (0.5, 0, 0.5)
 - C: (0.5, 0.5, 0)

Lattices

- **I is body-centered**
 - Point @ (0.5, 0.5, 0.5)
 - Multiplicity = 2

- **F is face-centered**
 - 0.5, 0.5, 0
 - 0.5, 0, 0.5
 - 0, 0.5, 0.5
 - Multiplicity = 4

Lattices

- **R is rhombohedral**
 - (2/3, 1/3, 1/3)
 - (1/3, 2/3, 2/3)
 - Multiplicity = 3
 - Trigonal system

Rotation + Translation: Screw Diads

- **2₁** is a 180° rotation plus ½ cell translation.

Screw Triads

- **3₁** is a 120° rotation plus a 1/3 cell translation.
- **3₂** is a 120° rotation plus a 2/3 cell translation.
Screw Tetrads

- 4₁ is a 90° rotation plus a 1/4 cell translation (right-handed).
- 4₂ is a 180° rotation plus a 1/2 cell translation (no handedness).
- 4₃ is a 90° rotation plus a 3/4 cell translation (left-handed).

Glide Planes

- Reflection plus 1/2 cell translation
 - a-glide: a/2 translation
 - b-glide: b/2 translation
 - c-glide: c/2 translation
 - n-glide (normal to a): b/2+c/2 translation
 - n-glide (normal to b): a/2+c/2 translation
 - n-glide (normal to c): a/2+b/2 translation
 - d-glide (tetragonal + cubic systems)

Screw Hexads

- 6₁ is a 60° rotation plus a 1/6 cell translation (right-handed).
- 6₂ is a 120° rotation plus a 1/3 cell translation (right-handed).
- 6₃ is a 180° rotation plus a 1/2 cell translation (no handedness).
- 6₄ is a 240° rotation plus a 2/3 cell translation (left-handed).
- 6₅ is a 300° rotation plus a 5/6 cell translation (left-handed).

Glide Planes

- Reflection plus 1/2 cell translation
 - a-glide: a/2 translation
 - b-glide: b/2 translation
 - c-glide: c/2 translation
 - n-glide (normal to a): b/2+c/2 translation
 - n-glide (normal to b): a/2+c/2 translation
 - n-glide (normal to c): a/2+b/2 translation
 - d-glide (tetragonal + cubic systems)

Space Group Symmetry Diagrams

- a-vertical
- b-horizontal
- c-normal to page
Space Group Symmetry Diagrams

- **Axis**
 - a 2 b
 - b 2 c
 - c 2 n

- **Plane**
 - \(P 21b 2a 2n = Pban \)

Pbcn

- **General**
 - (x, y, z)
 - (-x, -y, -z)
 - (x, -y, 1/2 + z)
 - (-x, y, 1/2 - z)
 - (1/2 - x, 1/2 + y, z)
 - (1/2 + x, 1/2 - y, -z)
 - (1/2 - x, 1/2 - y, 1/2 + z)
 - (1/2 + x, 1/2 + y, 1/2 - z)

- **Special**
 - (0, 0, 0)
 - (0, 0, 0)
 - (0, 0, 0.5)
 - (0, 0, 0.5)
 - (0.5, 0.5, 0)
 - (0.5, 0.5, 0)
 - (0.5, 0.5, 0.5)
 - (0.5, 0.5, 0.5)
Enstatite Pbcn

- Cell: $a=9.306; b=8.892; c=5.349\ \AA$
 - Mg1: $(0, 0.1006, 0.25)$
 - Mg2: $(0, 0.2625, 0.25)$
 - Si: $(0.2928, 0.0897, 0.0739)$
 - O1: $(0.1200, 0.0942, 0.0770)$
 - O2: $(0.3773, 0.2463, 0.0677)$
 - O3: $(0.3481, 0.9836, 0.3079)$

Quartz P3_121

- Cell: $a=b=4.9137; c=5.4047\ \AA$
 - Si: $(0.4697, 0.0, 0.0)$
 - O: $(0.4133, 0.2672, 0.1188)$