1. Mo k-series radiation has an absorption edge corresponding to a wavelength of 0.61977 Å. The k_α_1 line has a wavelength of 0.70926 Å and the k_β_1, a wavelength of 0.63225 Å.

 A. What is the minimum potential in KV that can be used to produce Mo k-series radiation from a Mo-target X-ray tube?

 B. What is the frequency of Mo k_β radiation?

 C. Nb has an absorption edge corresponding to a wavelength of 0.65291 Å. Can Nb be used as a β-filter for Mo radiation? Why?
2. Barite (BaSO$_4$) has orthorhombic cell edges $a = 7.157$ Å, $b = 8.884$ Å, and $c = 5.457$ Å. Calculate 2θ for CuK$_\alpha$ radiation $\lambda = 1.5405$ Å) for the following X-ray diffractions:
 a. (002)
 b. (110)
 c. (021)
 d. (111)
 e. (301)